This article needs additional citations for verification .(August 2009) (Learn how and when to remove this template message) |

In statistics, **count data** is a statistical data type, a type of data in which the observations can take only the non-negative integer values {0, 1, 2, 3, ...}, and where these integers arise from counting rather than ranking. The statistical treatment of count data is distinct from that of binary data, in which the observations can take only two values, usually represented by 0 and 1, and from ordinal data, which may also consist of integers but where the individual values fall on an arbitrary scale and only the relative ranking is important

An individual piece of count data is often termed a **count variable**. When such a variable is treated as a random variable, the Poisson, binomial and negative binomial distributions are commonly used to represent its distribution.

Graphical examination of count data may be aided by the use of data transformations chosen to have the property of stabilising the sample variance. In particular, the square root transformation might be used when data can be approximated by a Poisson distribution (although other transformation have modestly improved properties), while an inverse sine transformation is available when a binomial distribution is preferred.

Here the count variable would be treated as a dependent variable. Statistical methods such as least squares and analysis of variance are designed to deal with continuous dependent variables. These can be adapted to deal with count data by using data transformations such as the square root transformation, but such methods have several drawbacks; they are approximate at best and estimate parameters that are often hard to interpret.

The Poisson distribution can form the basis for some analyses of count data and in this case Poisson regression may be used. This is a special case of the class of generalized linear models which also contains specific forms of model capable of using the binomial distribution (binomial regression, logistic regression) or the negative binomial distribution where the assumptions of the Poisson model are violated, in particular when the range of count values is limited or when overdispersion is present.

This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations .(November 2009) (Learn how and when to remove this template message) |

- Cameron, A. C.; Trivedi, P. K. (2013).
*Regression Analysis of Count Data Book*(Second ed.). Cambridge University Press. ISBN 978-1-107-66727-3. - Hilbe, Joseph M. (2011).
*Negative Binomial Regression*(Second ed.). Cambridge University Press. ISBN 978-0-521-19815-8. - Winkelmann, Rainer (2008).
*Econometric Analysis of Count Data*(Fifth ed.). Springer. doi:10.1007/978-3-540-78389-3. ISBN 978-3-540-77648-2.

In probability theory and statistics, the **negative binomial distribution** is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of successes occurs. For example, we can define rolling a 6 on a dice as a success, and rolling any other number as a failure, and ask how many failed rolls will occur before we see the third success. In such a case, the probability distribution of the number of non-6s that appear will be a negative binomial distribution.

The method of **least squares** is a standard approach in regression analysis to approximate the solution of overdetermined systems by minimizing the sum of the squares of the residuals made in the results of every single equation.

In statistics and optimization, **errors** and **residuals** are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "theoretical value". The **error** of an observed value is the deviation of the observed value from the (unobservable) *true* value of a quantity of interest, and the **residual** of an observed value is the difference between the observed value and the *estimated* value of the quantity of interest. The distinction is most important in regression analysis, where the concepts are sometimes called the **regression errors** and **regression residuals** and where they lead to the concept of studentized residuals.

In statistics, the **generalized linear model** (**GLM**) is a flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a *link function* and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

In statistical modeling, **regression analysis** is a set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables. The most common form of regression analysis is linear regression, in which a researcher finds the line that most closely fits the data according to a specific mathematical criterion. For example, the method of ordinary least squares computes the unique line that minimizes the sum of squared distances between the true data and that line. For specific mathematical reasons, this allows the researcher to estimate the conditional expectation of the dependent variable when the independent variables take on a given set of values. Less common forms of regression use slightly different procedures to estimate alternative location parameters or estimate the conditional expectation across a broader collection of non-linear models.

The **general linear model** or **multivariate regression model** is a statistical linear model. It may be written as

**Mathematical statistics** is the application of probability theory, a branch of mathematics, to statistics, as opposed to techniques for collecting statistical data. Specific mathematical techniques which are used for this include mathematical analysis, linear algebra, stochastic analysis, differential equations, and measure theory.

*Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.*

In statistics, **Poisson regression** is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable *Y* has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables.

In statistics, **overdispersion** is the presence of greater variability in a data set than would be expected based on a given statistical model.

**Multilevel models** are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped. These models can be seen as generalizations of linear models, although they can also extend to non-linear models. These models became much more popular after sufficient computing power and software became available.

In statistics, the **Durbin–Watson statistic** is a test statistic used to detect the presence of autocorrelation at lag 1 in the residuals from a regression analysis. It is named after James Durbin and Geoffrey Watson. The small sample distribution of this ratio was derived by John von Neumann. Durbin and Watson applied this statistic to the residuals from least squares regressions, and developed bounds tests for the null hypothesis that the errors are serially uncorrelated against the alternative that they follow a first order autoregressive process. Later, John Denis Sargan and Alok Bhargava developed several von Neumann–Durbin–Watson type test statistics for the null hypothesis that the errors on a regression model follow a process with a unit root against the alternative hypothesis that the errors follow a stationary first order autoregression. Note that the distribution of this test statistic does not depend on the estimated regression coefficients and the variance of the errors.

In statistics, **data transformation** is the application of a deterministic mathematical function to each point in a data set—that is, each data point *z _{i}* is replaced with the transformed value

**Taylor's power law** is an empirical law in ecology that relates the variance of the number of individuals of a species per unit area of habitat to the corresponding mean by a power law relationship. It is named after the ecologist who first proposed it in 1961, Lionel Roy Taylor (1924–2007). Taylor's original name for this relationship was the law of the mean.

In statistics, groups of individual data points may be classified as belonging to any of various **statistical data types**, e.g. categorical, real number, odd number(1,3,5) etc. The data type is a fundamental component of the semantic content of the variable, and controls which sorts of probability distributions can logically be used to describe the variable, the permissible operations on the variable, the type of regression analysis used to predict the variable, etc. The concept of data type is similar to the concept of level of measurement, but more specific: For example, count data require a different distribution than non-negative real-valued data require, but both fall under the same level of measurement.

In statistics, a **zero-inflated model** is a statistical model based on a zero-inflated probability distribution, i.e. a distribution that allows for frequent zero-valued observations.

In statistics, **linear regression** is a linear approach to modeling the relationship between a scalar response and one or more explanatory variables. The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called **multiple linear regression**. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.

In statistics, the class of **vector generalized linear models** (**VGLMs**) was proposed to enlarge the scope of models catered for by generalized linear models (**GLMs**). In particular, VGLMs allow for response variables outside the classical exponential family and for more than one parameter. Each parameter can be transformed by a *link function*. The VGLM framework is also large enough to naturally accommodate multiple responses; these are several independent responses each coming from a particular statistical distribution with possibly different parameter values.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.